Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 975
Filtrar
1.
Biosci Rep ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660995

RESUMO

Several models of mice-fed high-fat diets have been used to trigger non-alcoholic steatohepatitis and some chemical substances, such as carbon tetrachloride. This study aimed to evaluate the joint action of a high-fat diet and CCl4 in developing a short-term non-alcoholic steatohepatitis model. C57BL6/J mice were divided into two groups: standard diet-fed (SD), the high-fat diet-fed (HFD) and HFD + fructose-fed and carbon tetrachloride (HFD+CCl4). Animals fed with HFD+CCl4 presented increased lipid deposition compared with both SD and HFD mice. Plasma cholesterol was increased in animals from the HFD+CCl4 group compared to the SD and HFD groups, without significant differences between the SD and HFD groups. Plasma triglycerides showed no significant difference between the groups. The HFD+CCl4 animals had increased collagen deposition in the liver compared with both SD and HFD groups. Hydroxyproline was also increased in the HFD+CCl4 group. Liver enzymes, alanine aminotransferase and aspartate aminotransferase, were increased in the HFD+CCl4 group, compared with SD and HFD groups. Also, CCl4 was able to trigger an inflammatory process in the liver of HFD-fed animals by promoting an increase of ~2 times in macrophage activity, ~6 times in F4/80 gene expression, and pro-inflammatory cytokines (IL-1b and TNFa), in addition to an increase in inflammatory pathway protein phosphorylation (IKKbp). HFD e HFD+CCl4 animals increased glucose intolerance compared with SD mice, associated with reduced insulin-stimulated AKT activity in the liver. Therefore, our study has shown that short-term HFD feeding associated with fructose and CCl4 can trigger non-alcoholic steatohepatitis and cause damage to glucose metabolism.

2.
Water Res ; 256: 121589, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38608620

RESUMO

Fe2+ is usually adsorbed to the surface of iron-bearing clay, and iron (hydr)oxide in groundwater. However, the reductive activity of Fe(OH)2, a prevalent intermediate during the transformation of Fe2+, remains unclear. In this study, high-purity Fe(OH)2 was synthesized and tested for its activity in the degradation of carbon tetrachloride (CT). XRD data confirm that the synthesized material is a pure Fe(OH)2 crystal, exhibiting sharp peaks of (001) and (100) facets. Zeta potential analysis confirms that the off-white Fe(OH)2 is a colloidal suspension with a positive charge of ∼+35-50 mV. FTIR spectra reveal the formation of a coordination compound Fe2+ with OH-/OD-, derived from NaOH/OD. SEM and HRTEM results demonstrate that the Fe(OH)2 crystal has a regular octahedral structure with a size of ∼30-70 nm and average lattice spacings of 2.58 Å. Mössbauer spectrum verifies that the Fe2+ in Fe(OH)2/Fe(OD)2 is hexacoordinated with six Fe-O bonds. XAFS data demonstrate that the Fe-O bonds become shorter as the OH-:Fe(II) ratios increase. DFT results indicate that the (100) crystal face of Fe(OH)2 more readily transfers electrons to CT. In addition to being adsorbed to iron compounds, structural Fe2+ compounds such as Fe(OH)2 could also accelerate the electron transfer from Fe2+ to CT through shortened Fe-O bonds. The rate constant of CT reduction by Fe(OH)2 is as high as 0.794 min-1 when the OH-:Fe(II) ratio is 2.5 in water. This study aims to enhance our understanding of the structure-reactivity relationship of Fe2+ compounds in groundwater, particularly in relation to electron transfer mechanisms.

3.
Front Pharmacol ; 15: 1347120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606180

RESUMO

Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.

4.
Vet Anim Sci ; 24: 100349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590834

RESUMO

This study was conducted to evaluate the effects of chia seed extract on CCl4-induced hepatotoxicity, hematological profile, and carrageenan-induced inflammation in rats. Water-ethanol-acetone extract of chia seeds at the doses of 200 and 400 mg/kg body weight/day were applied to evaluate the comparative protective roles. Hematological profile and serum biochemical parameters were measured to evaluate the hematoprotective, and hepatoprotective effects of chia seed extract. Paw thickness and motility level were assessed at 0, 1, 3, 5, and 7 h after sub-planter injection of carrageenan to evaluate the anti-inflammatory potential. Tissue histopathology was performed in both cases. Chia seed extract reduced the elevated level of serum AST and ALT significantly in a dose-dependent manner following intra-peritoneal injection of CCl4. Histopathological study of the liver tissue exhibited acute impairment of the hepatocytes and liver parenchyma following CCl4 exposure, which was markedly regenerated by the chia seed extract treatment. Protective effects of the extracts were also evidenced by the RBC count, Hb (%), PCV (%), ESR, and neutrophil count. Chia seed extract was found to inhibit the carrageenan-induced paw edema and increase motility level in a dose-oriented fashion. Histological examination of the paw tissue revealed severe inflammation characterized by massive infiltration of inflammatory cells in the carrageenan group, which was significantly reduced by chia seed extract treatment. The higher dose of chia seed extract showed significant increases in bodyweight gain and feed efficiency ratio but decrease in visceral fat deposition. These results suggest that chia seeds possess potentials for hematoprotective, hepatoprotective, and anti-inflammatory activities.

5.
Sci Rep ; 14(1): 8013, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580754

RESUMO

Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteômica , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Dietilnitrosamina/efeitos adversos , Cirrose Hepática/patologia , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo
6.
Cell Biochem Funct ; 42(3): e4015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613208

RESUMO

Toxicity caused by carbon tetrachloride (CCl4) can lead to serious liver injury. The aim of the study is to investigate the protective effects of oregano oil (Origanum minutiflorum extract oil) against CCl4-induced liver injury. Two doses of oregano oil were used in the experiment: a low dose (LD; 20 mg/kg) and a high dose (HD; 60 mg/kg) during 2 weeks. CCl4 caused severe liver damage, nucleolus destruction in hepatocytes and cytogenetic changes in the nucleus. Indirectly, CCl4 causes decreased protein synthesis and significantly high creatinine and urea values. Hematological disorders have been recorded, such as decreased RBC and hemoglobin concentration, increased WBC and deformability of the erythrocyte membrane. Both doses of oregano oil had protective effects. Improved protein synthesis and high globulins level, creatinine and urea were found in both groups. Cytogenetic changes in the nucleus of hepatocytes were reduced. A high dose of oregano oil had maximal protective effects for RBC, but a very weak effect on hemoglobin synthesis. Also, WBC and lymphocyte values were low. Origanum stimulates protein synthesis and recovery of hepatocytes after liver injury, reduces the deformability of the erythrocyte membrane. High doses of oregano oil decreased WBC and lymphocytes which may lead to a weakening of the immune response. However, high doses are more effective against severe platelet aggregation than low doses, suggesting an effective treatment against thrombocytosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Origanum , Animais , Ratos , Tetracloreto de Carbono/toxicidade , Creatinina , Ureia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hemoglobinas
7.
Water Res ; 254: 121342, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428238

RESUMO

The coordination environment of Fe(II) significantly affect the reductive reactivity of Fe(II). Lactate is a common substrate for enhancing microbial dechlorination, but its effect on abiotic Fe(II)-driven reductive dechlorination is largely ignored. In this study, the structure-reactivity relationship of Fe(II) is investigated by regulating the ratio of lactate:Fe(II). This work shows that lactate-Fe(II) complexing enhances the abiotic Fe(II)-driven reductive dechlorination with the optimum lactate:Fe(II) ratio of 10:20. The formed hydrogen bond (Fe-OH∙∙∙∙∙∙O = C-) and Fe-O-C metal-ligand bond result in a reduced Fe(II) coordination number from six to four, which lead to the transition of Fe(II) coordination geometry from octahedron to tetrahedron/square planar. Coordinatively unsaturated Fe(II) results in the highest reductive dechlorination reactivity towards carbon tetrachloride (k1 = 0.26254 min-1). Excessive lactate concentration (> 10 mM) leads to an increased Fe(II) coordination number from four to six with a decreased reductive reactivity. Electrochemical characterization and XPS results show that lactate-Fe(II)-I (C3H5O3-:Fe(II) = 10:20) has the highest electron-donating capacity. This study reveals the abiotic effect of lactate on reductive dechlorination in a subsurface-reducing environment where Fe(II) is usually abundant.


Assuntos
Ácido Láctico , Metais , Tetracloreto de Carbono/química , Compostos Ferrosos
8.
Toxicol Pathol ; : 1926233241235623, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528719

RESUMO

Iron overload has been recognized as a risk factor for liver disease; however, little is known about its pathological role in the modification of liver injury. The purpose of this study is to investigate the influence of iron overload on liver injury induced by two hepatotoxicants with different pathogenesis in rats. Rats were fed a control (Cont), 0.8% high-iron (0.8% Fe), or 1% high-iron diet (1% Fe) for 4 weeks and were then administered with saline, thioacetamide (TAA), or carbon tetrachloride (CCl4). Hepatic and systemic iron overload were seen in the 0.8% and 1% Fe groups. Twenty-four hours after administration, hepatocellular necrosis induced by TAA and hepatocellular necrosis, degeneration, and vacuolation induced by CCl4, as well as serum transaminase values, were exacerbated in the 0.8% and 1% Fe groups compared to the Cont group. On the other hand, microvesicular vacuolation induced by CCl4 was decreased in 0.8% and 1% Fe groups. Hepatocellular DNA damage was increased by iron overload in both models, whereas a synergistic effect of oxidative stress by excess iron and hepatotoxicant was only present in the CCl4 model. The data showed that dietary iron overload exacerbates TAA- and CCl4-induced acute liver injury with different mechanisms.

9.
Methods Mol Biol ; 2769: 57-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315388

RESUMO

Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD). Obesity is a known risk factor of NASH, which, in turn, increases the risk of developing cirrhosis (liver scarring) and hepatocellular carcinoma (HCC). In addition to being a potentially life-threatening condition, public health concerns surrounding NASH are amplified by the lack of FDA-approved treatments. Although various preclinical models reflecting both the histopathology and the pathophysiological progression of human NASH exist, most of these models are diet-based and require 6-13 months for NASH symptom manifestation. Here, we describe a simple and rapid-progression model of NASH and NASH-driven HCC in mice. Mice received a western diet equivalent (WD; i.e., a high-fat, high-fructose, and high-cholesterol diet), high-sugar water (23.1 g/L fructose and 18.9 g/L glucose), and weekly intraperitoneal injections of carbon tetrachloride (CCl4) at a dose of 0.2 µL/g of body weight. The resulting phenotype, consisting in liver fibrosis and HCC, appeared within 24 weeks of diet/treatment initiation and presented similar histological and transcriptomic features as human NASH and NASH-driven HCC, thereby supporting the adequacy of this preclinical model for the development and evaluation of drugs that can prevent or reverse these diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/genética , Tetracloreto de Carbono/toxicidade , Neoplasias Hepáticas/patologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Cirrose Hepática/patologia , Frutose , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Camundongos Endogâmicos C57BL
10.
J Pak Med Assoc ; 74(1 (Supple-2)): S63-S67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385474

RESUMO

OBJECTIVE: To examine the therapeutic effects of Olea europaea L. leaves extract on carbon tetrachloride-induced liver injury in rats. Methods: The experimental study was conducted at the Department of Physiology, University of Karachi, Karachi, in July 2021, and comprised Albino Wistar male rats weighing 180-220gm. The animals were divided into control group I, carbon tetrachloride group II, Olea europaea L. + carbon tetrachloride group III and Olea europaea L. group IV. In Vitro model of hepatic toxicity was developed by carbon tetrachloride. A daily dose of 50mg/kg of aqueous extract of olive leaves was administered orally and 0.8ml/kg of carbon tetrachloride was administered twice a week subcutaneously for 28 days. On the 29th day, the animals were sacrificed, and tested for hepatic enzymes, lipid peroxidation markers and histopathology. Data was analysed using SPSS 20. RESULTS: Of the 24 rats, 6(25%) were in each of the 4 groups. Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin levels were significantly reduced (p<0.05) in group II whereas, 4- hydroxynonenal, isoprostane and malondialdehyde levels were significantly increased (p<0.05). However, total antioxidant level increased significantly (p<0.05) in group III compared to group II. Histopathology showed severe liver damage in group II and mild damage in group III. Conclusion: Olea europaea L. leaves extract was found to have profound hepatoprotective effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Olea , Ratos , Masculino , Animais , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Olea/metabolismo , Fitoterapia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fígado/patologia , Ratos Wistar , Aspartato Aminotransferases , Alanina Transaminase/metabolismo , Peroxidação de Lipídeos
11.
Saudi J Med Med Sci ; 12(1): 17-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362098

RESUMO

Background: Hepatotoxicity caused by CCL4 is well known. Geraniol (GNL) has high antioxidant effect that can induces liver regeneration. However, the protective effect of GNL effect on CCL4-induced hepatorenal toxicity in pregnant mice has not yet been studied. Objective: To investigate whether GNL could protect against oxidative stress induced by CCL4 via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, which is regulated by phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), and has been found to have protective effects on renal and hepatic tissues. Materials and Methods: Forty-eight female albino mice weighing 25-30 g were randomly allocated to 4 groups: Group I served as a control; Group II received a toxicity-inducing single dose of 15 µL of CCL4 on the 4th day after mating; Group III received 40 mg/kg GNL + CCL4 (with GNL from the 1st day of assimilation to delivery); and Group IV received GNL alone from the 1st day of assimilation to the end of the delivery period. GNL was evaluated for its protective effects on hepatotoxicity in CCL4-treated pregnant mice. Litter size, weight, survival rate, and resorption were recorded. In addition, H & E staining was done for liver and kidney pathology as well as biochemical markers and oxidative markers malondialdehyde, superoxide dismutase, and catalase were analyzed. Results: CCL4 significantly reduced survival rate and increased resorption after exposure. Alanine transaminase and aspartate aminotransferase concentrations in the serum, tissue MDA, blood urea nitrogen, and creatinine were increased after CCL4 exposure. GNL improved enzyme and antioxidant levels and prevented CCL4-induced hepatic injury in mice. Caspase-3 cleavage was decreased by GNL, which increased PI3K, phosphorylated AKT, Nrf2, and B-cell lymphoma 2. Conclusion: GNL demonstrates a protective effect against CCl4-induced hepatorenal toxicity, mediated through the activation of the PI3K/AKT signaling pathway and the upregulation of Nrf2. These findings highlight the potential therapeutic implications of GNL in mitigating oxidative stress and inflammation in liver and kidney tissues.

12.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338821

RESUMO

Acute-on-chronic liver failure (ACLF) is associated with increased mortality. Specific therapy options are limited. Hypoxia-inducible factor 1 alpha (HIF-1α) has been linked to the pathogenesis of chronic liver disease (CLD), but the role of HIF-1α in ACLF is poorly understood. In the current study, different etiologies of CLD and precipitating events triggering ACLF were used in four rodent models. HIF-1α expression and the intracellular pathway of HIF-1α induction were investigated using real-time quantitative PCR. The results were verified by Western blotting and immunohistochemistry for extrahepatic HIF-1α expression using transcriptome analysis. Exploratory immunohistochemical staining was performed to assess HIF-1α in human liver tissue. Intrahepatic HIF-1α expression was significantly increased in all animals with ACLF, regardless of the underlying etiology of CLD or the precipitating event. The induction of HIF-1α was accompanied by the increased mRNA expression of NFkB1 and STAT3 and resulted in a marked elevation of mRNA levels of its downstream genes. Extrahepatic HIF-1α expression was not elevated. In human liver tissue samples, HIF-1α expression was elevated in CLD and ACLF. Increased intrahepatic HIF-1α expression seems to play an important role in the pathogenesis of ACLF, and future studies are pending to investigate the role of therapeutic HIF inhibitors in ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Humanos , Insuficiência Hepática Crônica Agudizada/etiologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Previsões , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , RNA Mensageiro/metabolismo
13.
Toxicol Res (Camb) ; 13(1): tfad114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179004

RESUMO

Background: Several hepatotoxicants such as acetaminophen, carbon tetrachloride, and thioacetamide are repeatedly used to develop hepatic fibrosis to mimic the histological and hemodynamic characteristics of human illness. It may be a good idea to establish a better model among these hepatotoxicants to develop hepatic fibrosis. Aim: The present study evaluated comparative toxic effects of three model hepatotoxicants for experimental progression of fibrosis or cirrhosis. Materials and methods: Acetaminophen (200 mg/kg), carbon tetrachloride (200 µl/kg) and thioacetamide (200 mg/kg) were administered orally, thrice in a week for 8 weeks in different groups. After 8 weeks of exposure, animals were euthanized, blood and tissues were collected for various hematological, serological, tissue biochemical analysis and histological observations for comparative assessment of toxic consequences. Results: Significant deviation was noted in liver function tests, lipid peroxidation, glutathione, activities of superoxide dismutase, catalase, and GSH cycle enzymes; aniline hydroxylase, amidopyrine-N-demethylase, DNA fragmentation and level of hydroxyproline when compared with control group. Histology also depicted damage in liver histoarchitecture with exposure to acetaminophen, carbon tetrachloride and thioacetamide. Tukey's HSD post hoc test confirmed that thioacetamide produced severe toxic effects in comparison to carbon tetrachloride and acetaminophen. Conclusion: In conclusion, toxic effects were noted in ascending order as acetaminophen.

14.
Environ Toxicol ; 39(3): 1666-1681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031637

RESUMO

The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1ß, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-ß1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and ß-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/ß-catenin protein expressions.


Assuntos
Cynara scolymus , Insuficiência Renal , Ratos , Animais , Tetracloreto de Carbono/toxicidade , Estresse Oxidativo , Cynara scolymus/metabolismo , Antioxidantes/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Extratos Vegetais/farmacologia , Cateninas/metabolismo , Cateninas/farmacologia , Fígado
15.
J Mol Med (Berl) ; 102(1): 113-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993562

RESUMO

Hepatic fibrosis (HF) could be developed into liver cirrhosis or even hepatocellular carcinoma. Stress has an important role in the occurrence and development of various considerable diseases. However, the effect of a certain degree stress on HF is still controversial. In our study, stress was simulated with regular chronic restraint stress (CRS) and HF model was induced with CCl4 in mice. We found that CRS was able to attenuate CCl4-induced liver injury and fibrosis in mice. Surprisingly, behavioral analysis showed that the mice in the HF group exhibited depression-like behavior. Further, the metabolomic analysis revealed that 119 metabolites and 20 metabolic pathways were altered in mice liver, especially the betaine metabolism pathway. Combined with the results of Ingenuity Pathway Analysis (IPA), the key proteins INSR, PI3K, AKT, and p-AMPK were identified and verified, and the results showed that CRS could upregulate the protein levels and mRNA expression of INSR, PI3K, AKT, and p-AMPK in liver tissues of HF mice. It suggested that CRS alleviated CCl4-induced liver fibrosis in mice through upregulation of the INSR/PI3K/AKT/AMPK pathway. Proper stress might be a potential therapeutic strategy for the treatment of chronic liver disease, which provided new insights into the treatment of HF. KEY MESSAGES: Chronic restraint stress mitigated CCl4-induced liver injury and hepatic fibrosis. CCl4-induced liver fibrosis could cause depression-like behavior. Chronic restraint stress altered metabolomic profiles in hepatic fibrosis mice, especially the betaine metabolism pathway. Chronic restraint stress increased betaine levels in liver tissue. Chronic restraint stress regulated the INSR/PI3K/AKT/AMPK signaling pathway in hepatic fibrosis mice.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Betaína/farmacologia , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo
16.
Int J Biol Macromol ; 258(Pt 2): 129052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161012

RESUMO

Gut microbial dysbiosis has always served as a potential factor in the occurrence and development of liver fibrosis. Liver and gut microflora can regulate each other through the gut-liver axis. In this study, the 16S rRNA and RNA-seq were chosen to sequence gut microbiota alteration and liver differentially expressed genes (DEGs) in carbon tetrachloride (CCl4) included-liver fibrosis mice, and analyze the correlations between gut microbiota constituents and DEGs. Results indicated that, CCl4 significantly increased the abundance of Desulfobactera in the phylum level, destroyed gut microbiota balance in the genus levels, especially Enterorhabdus and Desulfovibrio. Through analysis, 1416 genes were found differentially expressed in mice liver tissue in the CCl4 Group, compared with the Control Group; and the DEGs were mainly involved in the lipid metabolic process and immune system process. The correlation analysis revealed that the relative abundance of microbiota phylum (Desulfobactera) and genus (Enterorhabdus and Desulfovibrio) was negatively correlated with the metabolism related genes, while positively correlated with immune-related genes and the genes enriched in PI3K-Akt signaling pathway. To sum up, CCl4 can partially regulate gene expression in metabolism, immune response and the PI3K/Akt pathway, and further maintain the stability of the gut environment in liver fibrosis mice.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/genética , Disbiose/metabolismo , RNA Ribossômico 16S/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Fatores Imunológicos/metabolismo
17.
Heliyon ; 9(12): e23065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125544

RESUMO

Introduction: Carbon-tetrachloride (CCl4) is well-known to cause liver damage due to severe oxidative stress. Nerol, on the other hand, is a monoterpene that is antioxidant, antiviral, antibacterial, anti-inflammatory, and anxiolytic. This study set out to determine if nerol may be used as a prophylactic measure against the oxidative stress mediated hepatic injury caused by CCl4. Materials and methods: For the aim of this experiment, 35 male Sprague-Dawley rats ranging in body weight (BW) from 140 to 180 g were split into five separate groups. With the exception of vehicle control group 1, all experimental rats were subjected to carbon tetrachloride exposure through intra-peritoneal injection at a 0.7 mL/kg body weight dose once a week for 4 weeks (28 days). The treatment groups 3 and 4 received oral administration of nerol at 50 and 100 mg/kg BW for 28 days. In the same time period, the standard control group received 100 mg/kg BW silymarin. Results: Serum hepatic markers, lipid profiles, albumin, globulin, bilirubin, and total protein were all substantially improved in nerol-treated rats in a dose-dependent manner that had been exposed to CCl4 compared to the only CCl4-treated group. Carbon tetrachloride-exposed rats had lower glutathione, superoxide dismutase, and catalase levels and higher thio-barbituric acid reactive substances (TBARS) levels than normal rats. In contrast, administration of nerol shown a significant augmentation in the concentrations of these antioxidant compounds, while concurrently inducing a decline in the levels of TBARS in the hepatic tissue. In a similar vein, the histo-pathological examination yielded further evidence indicating that nerol offered protection to the hepatocyte against damage generated by CCl4. Conclusion: According to the findings of our investigation, nerol has potential as a functional element to shield the liver from harm brought on by ROS that are caused by CCL4.

18.
Toxicol Res (Camb) ; 12(5): 895-901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915487

RESUMO

Introduction: Herein the neuroprotective properties of melatonin, a highly effective antioxidant, administered in a single dose 50 mg/kg intraperitoneally, were investigated in the brain tissue of Wistar rats acutely exposed to the toxin carbon-tetrachloride (1 mL/kg, intraperitoneally). Methods: To assess the degree of whole encephalic mass damage, biochemical parameters related to lipid and protein oxidation, antioxidant enzymes (catalase and superoxide dismutase), glutathione and inducible nitric oxide/arginase pathways were determined. Results: The results showed that carbon-tetrachloride impaired the function of antioxidant enzymes (reduced catalase and superoxide dismutase activities) and reduced glutathione-metabolizing enzymes (reduced glutathione, glutathione S-transferase and peroxidase activity). Furthermore, carbon-tetrachloride increased lipid peroxidation and protein oxidative damage in the brain tissue, as well as myeloperoxidase and inducible nitric oxide synthase content/activities. Conclusions: The application of a single dose of melatonin post intoxication has been able to reverse the disturbance in the function of antioxidant enzymes and alleviate the tissue damage caused by oxidative stress, indicating that melatonin could be a potential therapeutic agent in oxidative-damage related neurodegenerative disorders.

19.
JHEP Rep ; 5(12): 100906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023606

RESUMO

Background & Aims: Liver regeneration is vital for the recovery of liver function after injury, yet the underlying mechanism remains to be elucidated. Forkhead box protein A3 (FOXA3), a member of the forkhead box family, plays important roles in endoplasmic reticulum stress sensing, and lipid and glucose homoeostasis, yet its functions in liver regeneration are unknown. Methods: Here, we explored whether Foxa3 regulates liver regeneration via acute and chronic liver injury mice models. We further characterised the molecular mechanism by chromatin immunoprecipitation sequencing and rescue experiments in vivo and in vitro. Then, we assessed the impact of Foxa3 pharmacological activation on progression and termination of liver regeneration. Finally, we confirmed the Foxa3-Cebpb axis in human liver samples. Results: Foxa3 is dominantly expressed in hepatocytes and cholangiocytes and is induced upon partial hepatectomy (PH) or carbon tetrachloride (CCl4) administration. Foxa3 deficiency in mice decreased cyclin gene levels and delayed liver regeneration after PH, or acute or chronic i.p. CCl4 injection. Conversely, hepatocyte-specific Foxa3 overexpression accelerated hepatocytes proliferation and attenuated liver damage in an CCl4-induced acute model. Mechanistically, Foxa3 directly regulates Cebpb transcription, which is involved in hepatocyte division and apoptosis both in vivo and in vitro. Of note, Cebpb overexpression in livers of Foxa3-deficient mice rescued their defects in cell proliferation and regeneration upon CCl4 treatment. In addition, pharmacological induction of Foxa3 via cardamonin speeded up hepatocyte proliferation after PH, without interfering with liver regeneration termination. Finally, Cebpb and Ki67 levels had a positive correlation with Foxa3 expression in human chronic disease livers. Conclusions: These data characterise Foxa3 as a vital regulator of liver regeneration, which may represent an essential factor to maintain liver mass after liver injury by governing Cebpb transcription. Impact and Implications: Liver regeneration is vital for the recovery of liver function after chemical insults or hepatectomy, yet the underlying mechanism remains to be elucidated. Herein, via in vitro and in vivo models and analysis, we demonstrated that Forkhead box protein A3 (FOXA3), a Forkhead box family member, maintained normal liver regeneration progression by governing Cebpb transcription and proposed cardamonin as a lead compound to induce Foxa3 and accelerate liver repair, which signified that FOXA3 may be a potential therapeutic target for further preclinical study on treating liver injury.

20.
J Ayurveda Integr Med ; 14(6): 100818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011760

RESUMO

BACKGROUND: Decalepis hamiltonii (D. hamiltonii) is Indian folk medicine in herbal preparations, to reduce appetite, and cures dysentery, bronchitis, uterine hemorrhage, and other ailments. OBJECTIVE: The current investigation focused on the hepatoprotective effect of D. hamiltonii roots fractions against liver damage. MATERIALS AND METHODS: The current research discussed the fraction from D. hamiltonii root extracts was used. Male Wistar rats (albino strain) were grouped into 4 distinct groups of six animals each. Group I: plain water and vehicle whereas Group II (CCl4 control): CCl4 (1 ml/kg, 20 % v/v in olive oil) over 7 days and vehicle; Over 7 days, Group III received Silymarin 100 mg/kg/day and tap water with 20 % v/v of CCl4, whereas Group IV (treatment group) received DHE 50 mg/kg/day, 100 mg/kg/day, and water. Assessment of biochemical parameters, Mitochondrial modulation, gene expression analysis, and RT-PCR, was used to estimate the protective action of DHEF in CCl4-intoxicated rats. RESULTS: The administration of CCl4 increased levels of total bilirubin (0.63 ± 0.97 mg/dl) plasma amino transferases (110.36 ± 1.13 U/L, 86.56 ± 2.41 U/L and 1.51 ± 1.36 mg/dl respectively) which were mitigated by D. hamiltonii treatment. Activity like Lipid peroxidation and content of nitric oxide also augmented, while the antioxidant action measured by GSH (9.64 ± 0.18 U/mg protein), SOD (3.69 ± 0.22 U/mg protein), and CAT (1.47 ± 0.01 U/mg protein) was reduced. Decalepis hamiltonii root provided substantial restoration of GSH (14.92 ± 0.04 nmol/gm protein), SOD (4.20 ± 0.18 U/mg protein), and CAT (2.71 ± 0.04 U/mg protein) levels. In addition, the acute phase reactants stimulated by CCl4 administration enhanced mRNA expressions of IL-6, IL-10, TNF-a, NF-κß, and COX-2, which were enhanced by D. hamiltonii treatment. CONCLUSIONS: In summary, DHEF protects the liver against CCl4-induced damage, possibly by mitochondrial modulation mechanism. These findings indicate that D. hamiltonii significantly moderates oxidative stress of CCl4-induced hepatotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...